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Sigmoid activation with Logistic loss

1
a(z) = o(z) = m
L(a,y) = —(y ma+ (1 —y) In(1 - a))

For those who are curious about where the dz = a — y comes from.

If you're curious, here is the derivation for
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Step 1: Solve for o

L=—(ylna+(1-y)In(l-a))
take the derivative with respect to a. Remember that there is an additional —1 in the last term

when we take the derivative of log(1 — a) with respect to a
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Step 2: Solve for 2
Oa d
2 Ea(z)

The derivative of the sigmoid functions the form (not derived):
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Recall that o(z) = a, because we defined a, the activation, as the output of the sigmoid activation
function. So we can substitute into the formula to get:
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Step 3: &&
Multiply step 1 and step 2 to get the result.
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Sigmoid activation with MSE loss
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Linear activation with MSE loss

a(z) =z
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Softmax activation with cross entropy loss function
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LaTex Math Examples
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In non-relativistic wave mechanics, the wave function v(r, t) of a particle satisfies the
Schrodinger Wave Equation
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It is customary to normalize the wave equation by demanding that

///R %(r, 0)|? dz dy dz = 1

A simple calculation using the Schrodinger Wave Equation shows that

/// O de dydz = 0
/// B de dydz = 1

for all times t. If we normalize the wave function in this way then, for any (measurable) subset V'
of R3
and timet,

and hence
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///V lp(r, 1) dz dy dz

represents the probability that the particle is to be found within the region V" at time t.
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